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Abstract

Thermally fully developed, electro-osmotically generated convective transport has been analyzed for a parallel plate

microchannel and circular microtube under imposed constant wall heat flux and constant wall temperature boundary

conditions. Such a flow is established not by an imposed pressure gradient, but by a voltage potential gradient along the

length of the tube. The result is a combination of unique electro-osmotic velocity profiles and volumetric heating in the

fluid due to the imposed voltage gradient. The exact solution for the fully developed, dimensionless temperature profile

and corresponding Nusselt number have been determined analytically for both geometries and both thermal boundary

conditions. The fully developed temperature profiles and Nusselt number are found to depend on the relative duct

radius (ratio of the Debye length to duct radius or plate gap half-width) and the magnitude of the dimensionless

volumetric source.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Microfluidic transport has found importance in a

number of emerging technologies in micropower gener-

ation, chemical separation processes, cell analysis and

other biomedical diagnostic techniques. At physical

scales of order 100 lm, generating fluid motion in

the tube poses a considerable challenge. Conventional

pressure-driven flow technology requires significant

pressures, and while micropumps exist which are capa-

ble of delivering such pressures [1–3], they are difficult

to manufacture and maintain [1], and lack the precise

control that is often needed in microfluidic applications

[4]. Electro-osmotic flow may provide a viable alterna-

tive to pressure-driven liquid flow at the microscale, with

better flow control and no moving parts, and several

investigators have reported on electro-osmotic pump

systems [5–9].

Electro-osmosis is the bulk movement of liquid rel-

ative to a stationary surface due to an externally applied

electric field, and was first observed and reported by

Reuss nearly two centuries ago [10]. Most solid sub-

stances will acquire a relative electric charge when in

contact with an aqueous (polar) solution, which influ-

ences the charge distribution in the solution. Ions of

opposite charge (counterions) to that of the surface are

attracted towards the surface and ions of the same

charge (coions) are repelled from the surface as shown in

Fig. 1a. The net effect is the formation of a region close

to the charged surface called the electric double layer

(EDL) in which there is an excess of counterions over

coions, and which are distributed in a diffuse manner

[11]. The charge distribution in the fluid therefore falls

from its maximum near the wall (characterized by the

zeta potential) to a zero charge in the fluid core (for large

enough tube radius). The thickness of this layer is

characterized by the Debye length, which is the dis-

tance over which the net charge has decreased from the

charge magnitude near the tube wall surface to 1=e
(37%) of the surface charge. For example, glass and

fused silica capillaries carry dissociable silanol groups on

the surface, and are therefore negatively charged when
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adjacent to polar liquids. The positively charged cations

and solvent molecules strongly adsorbed at the wall will

remain stationary under the influence of an electric po-

tential in the streamwise direction. However, the mobile

cations in the EDL very near the tube walls will migrate

toward the cathode due to the excess charge in the layer,

which gives rise to a fluid body force near the tube walls

as illustrated in Fig. 1b. Viscous shear forces transmitted

from the EDL to the tube center pull the core fluid

towards the cathode as well. The resulting electro-osmotic

flow velocity distribution is a function of the ratio of the

Debye length to the capillary hydraulic radius. When

the Debye length is much less than the capillary radius,

the resulting velocity profile is nearly flat (characterized

by slug flow). At the other extreme, when the Debye

length is of the same order as the capillary radius, the

flow exhibits velocity gradients normal to the tube wall

with a maximum in velocity near the tube centerline (i.e.,

velocity distribution more nearly like that of classical

pressure-driven flow). Of course, the total electro-

osmotic flow rate in the tube is a function of the electro-

osmotic characteristics of the tube/fluid combination

(electro-osmotic mobility), tube size, imposed voltage

potential, etc. Generally speaking, the total flow rate in

the tube is inversely related to the Debye length.

Since the fluid dynamics of electro-osmotically gen-

erated flow are significantly different from traditional

pressure-driven flow, the thermal transport dynamics are

expected to be quite different as well. Two elements of

electro-osmotically generated flow result in departure

from traditional pressure-driven flow heat transfer.

First, the velocity profile in the tube will be a strong

function of the electro-osmotic character of the flow,

described by the electro-osmotic mobility and applied

voltage gradient along the tube length. These parameters

affect the magnitude of the electro-osmotically induced

flow, but assuming no variation in the liquid viscosity,

Nomenclature

a tube radius or channel gap half-width

C fluid specific heat

Dh hydraulic diameter

h convective heat transfer coefficient

ie conduction current density

k thermal conductivity

kb Boltzmann constant

Nu Nusselt number ðhDh=kÞ
Pe Peclet number ðRePrÞ
Pr Prandtl number ðm=aÞ
r radial coordinate

R normalized radial coordinate ðr=aÞ
Re Reynolds number ðq�uuD=lÞ
q00w wall heat flux

s volumetric energy generation

S normalized energy generation

T absolute temperature

Tm mixed mean temperature

Tw channel wall temperature

u local fluid velocity

umax maximum possible electro-osmotic velocity

�uu average velocity

U normalized local velocity ðu=�uuÞ
Umax ratio of mean velocity to maximum electro-

osmotic velocity

x streamwise coordinate

xfd fully developed distance

y wall-normal coordinate

Y normalized wall-normal coordinate ðy=aÞ
Z ratio of tube radius (or plate gap half-width)

to Debye length

Greek symbols

a thermal diffusivity

e fluid dielectric constant

U applied potential field

l absolute viscosity

m kinematic viscosity

q fluid density

r liquid electrical resistivity

h normalized temperature

hw normalized wall temperature

w excess charge distribution

f wall zeta potential

Fig. 1. Schematic illustration of electro-osmotically generated

flow.
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dielectric constant, and wall zeta potential, the shape of

the velocity profile is dependent only on the ratio of the

channel dimension to Debye length. The electro-osm-

otically generated velocity profile in the tube will influ-

ence the temperature distribution and resulting heat

transfer. Second, the applied voltage gradient and its

induced electric conduction current establishes Joule

heating in the fluid, resulting in volumetric energy gen-

eration therein. The magnitude of the thermal energy

source has significant influence on the temperature dis-

tribution and heat transfer.

For the case of electro-osmotic flow in microtubes

with small Debye length, near-slug flow will prevail.

Laminar, thermally developing transport in a circular

tube under slug flow velocity conditions has been pre-

viously analyzed [12]. The thermal entrance region for

slug flow in a circular tube is considerably longer than

for pressure-driven flow (with its resulting parabolic

velocity profile), and is given by xfd=Dh � 0:25Pe where
Pe is the Peclet number, equal to the product RePr.
Hydrodynamically developing flow between parallel

plates for electro-osmotically generated flow has also

been reported in a numerical study by Yang et al. [13].

They also report that the hydrodynamic development

length is about four times that associated with pressure-

driven flow. Typical electro-osmotic flows feature low

velocities on the order of a few mm/s, with resulting low

Peclet numbers. For a typical electro-osmotic flow Peclet

number of 100, slug flow yields a thermal development

length of approximately 25 diameters. For a 100 lm
tube, the thermal entry region is then approximately 2.5

mm in length. Thermally fully developed flow may thus

prevail over the majority of the tube length. An under-

standing of the thermally fully developed transport

characteristics for such flows is therefore needed.

Several analytical studies have appeared in the liter-

ature describing the hydrodynamics of fully developed

electro-osmotic flow through circular and rectangu-

lar channels. Specifically, several early papers report

on electro-osmotic velocity distributions and the asso-

ciated momentum transport in capillaries as a function

of channel diameter-to-Debye length ratio [14–16]. More

recent hydrodynamic studies have explored the effects on

the velocity field due to streamwise gradients in the

electrical conductivity [17], the transient response of the

velocity field to a suddenly applied voltage gradient [18],

the entry region flow field development [13,19], and ef-

fects of variations in the wall zeta potential on the ve-

locity profile characteristics [20,21]. Additionally, some

experimental studies have reported on the velocity pro-

file characteristics associated with fully developed elec-

tro-osmotic flow in very long circular and rectangular

channels [22–27].

With regards to characterization of the convection

heat transfer associated with electro-osmotic flow, rela-

tively little prior work has appeared in the literature. Li

et al. have explored electrokinetic effects induced in a

pressure-driven flow on the frictional and heat transfer

characteristics for both round and rectangular micro-

channels [28–30]. They report that the resulting induced

electrokinetic potential results in a reduced flow rate, a

greater friction factor, and a reduced Nusselt number

from the classical laminar pressure-driven flow scenario.

There also exists some early work exploring the effect

of volumetric energy dissipation on thermal develop-

ment in channels under pressure-driven flow conditions

[31,32]. Other investigators have explored the influence

of thermal band broadening due to Joule heating in

capillary electrophoresis [33–35]. However, no studies

have appeared in the literature that specifically address

and describe the convective heat transport characteris-

tics for purely electro-osmotically driven flow, with its

unique combination of complex velocity distribution

and fluid Joule heating. This study presents analytical

solutions for thermally fully developed electro-osmotic

flow in circular and parallel plate microchannels (based

on previously reported velocity distributions) for both

constant wall heat flux and constant wall temperature

boundary conditions. The analysis assumes no pressure-

driven component to the velocity field and constant

conductivity (electrical and thermal). Also, the wall zeta

potential is assumed be constant and less than 3kbT such
that the Debye–H€uuckel linearization holds [11]. The
total electrical current drawn in electro-osmotically

generated flow consists of two components, the so-called

conduction and convection currents. Volumetric heating

arises from the conduction current only and may be

safely modeled using Ohm�s law [15]. Further, this en-
ergy generation is distributed uniformly across the tube

or channel cross-section for low zeta potential (as im-

posed here) or for large diameter-to-Debye length ratios

[16].

Under the assumptions outlined above the convective

heat transfer behavior is investigated parametrically for

a range of problem scenarios relevant to electro-osmotic

flow, including the full possible range of channel dia-

meter-to-Debye length ratios.

2. Analysis

2.1. Momentum transport

Consider fully developed flow of an incompressible

fluid in a microchannel (circular or rectangular of infi-

nite width) where the flow is driven electro-osmotically

with coordinates as shown in Fig. 2. For steady flow

without an applied pressure gradient the streamwise

momentum equation reduces to [11]

l
1

yn
d

dy
yn
du
dy

� �
þ e
yn
d

dy
yn
dw
dy

� �
dU
dx

¼ 0 ð1Þ

D. Maynes, B.W. Webb / International Journal of Heat and Mass Transfer 46 (2003) 1359–1369 1361



where n ¼ 0 for the parallel plate configuration and
n ¼ 1 for the circular tube. l and e are the fluid viscosity
and dielectric constant, respectively, and have been as-

sumed to be constant in the present analysis. U is the

applied potential field, and wðyÞ is the excess charge
distribution. For low wall potentials the Debye–H€uuckel
linearization holds and the excess charge distribution is

simply

w ¼ fe�y=k ðy6 aÞ ð2Þ

for the parallel plate geometry [11], and

w ¼ f
I0ðy=kÞ
I0ða=kÞ

ð3Þ

for the circular tube [14]. f is the zeta potential, or
charge potential very near the wall, and is determined by

the liquid–solid interfacial chemistry [11]. k is the Debye
length, a is the tube radius (or half the plate gap width),
and I0 is the modified Bessel function of the first kind of
order zero. Upon substitution of Eq. (2) or (3) into Eq.

(1), integrating twice, and applying boundary conditions

reflecting no slip at the wall and zero shear stress at the

centerline, the velocity distributions can be expressed for

the parallel plate and circular tube, respectively, as

u
umax

¼ ½1� e�ZZY � e�YZ 	 ðY 6 1Þ ð4Þ

and

u
umax

¼ 1

�
� I0ðZRÞ

I0ðZÞ

�
ð5Þ

Y ð¼ y=aÞ or R (¼ r=a for the circular tube) is the non-
dimensional wall-normal coordinate, and Z is the duct
relative radius, or ratio of tube radius (or gap half-

width) to the Debye length, a=k. For large Z the size of
the EDL or region of excess charge (and corresponding

source of fluid momentum) is relatively small. Con-

versely, for Z ! 1 the double layer thickness is of the

same order of magnitude as the channel radius and the

region of excess charge (and source of fluid momentum)

is distributed over the entire channel. The term umax ¼
ðef=lÞdU=dx represents the maximum possible electro-

osmotic velocity for a given applied potential field,

where ef=l is often termed the electro-osmotic mobility
of the liquid [36]. For large Z ðZ > 500Þ Eqs. (4) and (5)

reduce to u=umax ¼ 1 which is the classical Helmoltz-
Smoluchowski equation [11]. Integration over the duct

cross-sectional area yields the normalized average ve-

locities expressed as

Umax ¼
�uu

umax
¼ 1

�
� Ze�Z

2
þ e

�Z

Z
� 1
Z

�
ð6Þ

and

Umax ¼
�uu

umax
¼ 1

�
� 2I1ðZÞ
ZI0ðZÞ

�
ð7Þ

for the two configurations, respectively.

The variation of Umax with relative duct radius Z for
the two duct geometries is shown in Fig. 3. Note that

Umax is greater for the parallel plate configuration than

for the circular tube for all Z, and for Z > 500, Umax � 1.
As the relative duct radius decreases, such that the

double layer extends deeper into the core fluid, Umax also

decreases. In other words, the ratio of average velocity

to maximum possible velocity for the applied poten-

tial field decreases as the excess charge distribution

spreads over a larger portion of the duct. Profiles of the

Parallel plate channel

2a

y

x

Circular tube

2ax

y (r)

Fig. 2. Definition of coordinate system and dimensions for parallel plate channel and circular tube.
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Umax

Z

circular tube
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channel

Fig. 3. Variation of electro-osmotically induced flow rate

Umaxð¼ �uu=umaxÞ as a function of Z for the parallel plate channel
and the circular tube.
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normalized local velocity, U ¼ u=�uu, are shown in Figs. 4
and 5 for the parallel plate and circular ducts, respec-

tively, for Z varying between 0.5 and 100. For Z ! 1,
the velocity profiles exhibit slug-like behavior, with a

very thin boundary layer. Conversely, as Z ! 0:5, the
velocity profiles approach the classical parabolic distri-

butions similar to Poiseuille flow, or gravity driven flows

with uniform body force. At intermediate values of

relative duct radius, where the source of momentum

varies from a concentrated source near the duct walls

ðZ > 100Þ to a uniformly distributed source ðZ ! 0:5Þ
the velocity profiles change accordingly.

2.2. Thermal transport

2.2.1. Constant wall heat flux boundary condition

Given steady hydrodynamically fully developed flow

with constant thermophysical properties, the energy

equation simplifies to

o2T
ox2

þ 1

yn
o

oy
yn

oT
oy

� �
¼ u

a
oT
ox

� s
k

ð8Þ

where n takes on the same values specified previously for
the circular tube and parallel plate channel. T is the local
temperature, a and k are the thermal diffusivity and
conductivity, and s is the volumetric generation due to
the resistance heating. For electro-osmotically driven

flow, s ¼ i2er where ie is the conduction current density
(A/m2) established by the applied potential and r is the
liquid electrical resistivity (Xm). If the flow field is also
thermally fully developed, as defined by the classical

definition of such

o

ox
Tw � T
Tw � Tm

� �
¼ 0 ð9Þ

with an imposed constant heat flux boundary condition

ðq00w ¼ constantÞ, oT=ox ¼ dTm=dx ¼ constant, and o2T=
ox2 ¼ 0. Furthermore, an energy balance on the fluid
yields

dTm
dx

¼ 4q00w
q�uuCDh

þ s
q�uuC

ð10Þ

In the above, Dh is the hydraulic diameter, and q and C
are the fluid density and specific heat, respectively.

Substituting Eq. (10) into Eq. (8) and introducing the

normalized temperature h ¼ ðT � TmÞ=ðq00wa=kÞ, yields
the nondimensional energy equation

1

Y n

d

dY
Y n dh

oY

� �
¼ 4a

Dh

�
þ S

�
U � S ð11Þ

where S ¼ sa=q00w and U ¼ u=�uu. The associated boundary
conditions are dh=dY ¼ 1 at the wall and dh=dY ¼ 0 at
the centerline. In practice, one imposes hw ¼ ðTw � TmÞ=
ðq00wa=kÞ at the wall, and integration of Eq. (11) twice
results in an expression for h in terms of hw. The
unknown normalized wall temperature hw is then de-
termined by evaluating the normalized mixed mean

temperature from its definition:

Z 1

0

UðY ÞhðY ÞY n dY ¼ 0 ð12Þ

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

U

Y

Z=0.5

1
5
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50

100

Fig. 4. Normalized electro-osmotically driven velocity profiles

as a function of Z for the parallel plate channel.

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

U

R

Z=0.5

1

5

10

50

100

Fig. 5. Normalized electro-osmotically driven velocity profiles

as a function of Z for the circular tube.
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Substituting the normalized velocity UðY Þ for electro-
osmotic flow (for a particular value of Z), and the
temperature hðY Þ from the solution of Eq. (11) subject

to appropriate boundary conditions, the integral of Eq.

(12) may be evaluated for hw. Substitution into the
normalized temperature distribution results in an ex-

pression for h as a function only of S, Z, and Y for each
channel configuration. Despite their complexity, the

expressions are included here for completeness. The di-

mensionless, fully developed temperature profile in the

parallel plate channel is

hðY Þ ¼ ð1þ SÞ
Umax

F1ðY ; ZÞ
�

� C1ðZÞ
Umax

�

þ S
C2ðZÞ
Umax

�
� Y 2

2

�
� Y

��
ð13Þ

The expression for the circular tube is (noting that

Y ¼ R for this coordinate system)

hðRÞ ¼ 2

Umax

�
þ S

1

Umax

�
� 1

��
R2 � 1
4

�

þ 1

8Umax

�
þ ð2þ SÞ
Z2Umax

1

�
� I0ðZRÞ

I0ðZÞ

�

� ð2þ SÞ
U
2

max

C3ðZÞ þ
S

Umax

C4ðZÞ ð14Þ

Relations for Umax as a function of relative duct radius Z
were presented in Eqs. (6) and (7), respectively, for the

parallel plate channel and circular tube. The remaining

functions F1ðY ; ZÞ and CiðZÞ appearing in Eqs. (13) and
(14) are listed in Table 1.

The Nusselt number is expressed generally as

Nu ¼ q00wDh
kðTw � TmÞ

¼ Dh
a
1

hw
ð15Þ

and can now be determined in terms of S and Z by

evaluating Eqs. (13) and (14) at the wall, Y ¼ 0 and
R ¼ 1. After algebraic manipulation and rearrange-

ment, the closed-form expression for the fully developed

Nusselt number for the constant heat flux boundary for

both the parallel plate channel and the circular tube may

be cast in the form

Nu ¼ U
2

max

AðZÞ þ S Dh
4a

� �
BðZÞ

ð16Þ

where again, expressions for Umax are given in Eqs. (6)

and (7) for the two channel geometries. The functions

AðZÞ and BðZÞ depend only on the relative duct radius,
and expressions are given in Table 2. As indicated pre-

viously, for large channels ðZ ! 1Þ the velocity be-
comes slug-like with magnitude equal to the maximum

electro-osmotic velocity, and Umax ¼ 1. The large-chan-
nel asymptotic values of AðZÞ for the parallel plate
channel and circular tube are 1/12 and 1/8, respectively.

The function BðZÞ vanishes at large Z for both geome-
tries. Thus, for flows in large channels with S ! 0

(corresponding to no volumetric heating or very large

imposed wall heat flux), the asymptotic values of the

Nusselt number for the parallel plate and circular tube

configurations are, respectively, Nu ¼ 12 and Nu ¼ 8.
These values are identical to the classical slug flow re-

sults [12]. The Nusselt number dependence on S and Z

Table 1

Expressions for the functions in the fully developed temperature profiles, Eqs. (13) and (14)

Parallel plate channel

F1ðY ; ZÞ ¼
Y 2

2

�
� Y

�
� Ze�Z

2

Y 3

3

�
� Y

�
� 1

Z2
ðe�YZ þ YZe�ZÞ

C1ðZÞ ¼ � 1
3
þ 1

Z2
� 3

2Z3
þ e�Z 5Z

12

�
� 3

2Z
þ 5

Z3

�
þ e�2Z 2

3

�
� 3

Z2
� 7

2Z3
� 2Z

2

15

�

C2ðZÞ ¼ � 1
3
þ 1

Z2
� 1

Z3
þ e

�Z

Z

�
� 1
2
þ 1

Z2
þ 5Z

2

24

�

Circular tube

C3ðZÞ ¼
1

Z2
3

�
� 2I1ðZÞ
ZI0ðZÞ

� I21 ðZÞ
I20 ðZÞ

� 4I1ðZÞ
ZI0ðZÞ

�

C4ðZÞ ¼
1

Z2
1

�
� 2I1ðZÞ
ZI0ðZÞ

�
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will be explored over their full ranges in the results

section to follow.

2.2.2. Constant wall temperature boundary condition

The differential equation governing thermal transport

with uniform wall temperature is identical to that for the

imposed constant wall heat flux, Eq. (8). However, the

normalization for the temperature and nondimensional

source are different, taking the more appropriate form

h ¼ ðT � TwÞ=ðTm � TwÞ and S ¼ sa2=kðTm � TwÞ. Also,
for the thermally fully developed condition oT=ox ¼
�hðdTm=dxÞ. Neglecting axial conduction, the nondi-
mensional energy equation thus becomes

1

Y n

d

dY
Y n dh

oy

� �
¼ �hU

�uua2

aðTm � TwÞ
dTm
dx

" #
� S ð17Þ

For an imposed constant wall temperature, there are

two volumetric source scenarios deserving discussion.

The first is S ¼ 0, which represents the traditional fully
developed condition outlined in classical analytical

treatments of convection heat transfer. The influence of

axial conduction in this scenario has previously been

explored for pressure-driven flow [37]. Given the implicit

nature of Eq. (17) (since the term in the brackets on the

right-hand side depends implicitly on the solution for h),
this problem was solved here numerically. In the case of

S ¼ 0 and large Z, the classical slug flow problem which
has appeared previously emerges, for which the fully

developed Nusselt number is Nu ¼ 9:869 and Nu ¼ 5:783
[12] for the parallel plate channel and circular tubes,

respectively. These values, as well as the classical results

Nu ¼ 7:541 and 3.657 for pressure-driven flow in con-
stant wall temperature parallel plate channels and cir-

cular tubes (with associated laminar flow, parabolic

velocity profiles) were verified to within 0.1% in nu-

merical solutions of this study. In order to characterize

the limiting case of electro-osmotically generated flow in

constant wall temperature channels with vanishing S,
the electro-osmotic velocity profiles of Eqs. (4) and (5)

were imposed in the numerical simulations. The result-

ing temperature profiles and corresponding Nusselt

number were thus determined as a function of Z.
The second scenario of interest for channels of con-

stant wall temperature is the asymptotic condition

reached far downstream of the tube entrance.

Under these conditions, the energy balance of Eq. (10)

yields dTm=dx ¼ 0, corresponding to the conditions

sa=q00w ¼ �2 and )1 for the circular tube and parallel
plate geometries, respectively. This interesting case is

one for which all energy generated by volumetric heating

in the fluid is dissipated convectively at the channel wall

(resulting in fluid cooling). This situation is similar to

fully developed Poiseuille flow in a tube with imposed

constant wall temperature and viscous dissipation,

studied by Ou and Cheng [38]. The asymptotic condition

in that study also exhibited volumetric heating (repre-

sented by viscous heating––a nonuniformly distributed

source in the wall-normal direction) which was dissi-

pated at the channel wall. Since the volumetric energy

generation in the fluid is assumed independent of axial

position in the channel, an overall energy balance re-

quires that there be axially uniform cooling of the fluid.

The implication of this asymptotic condition is the ex-

istence of a (negative) uniform wall heat flux in a con-

stant wall temperature channel. Recall that for uniform

wall heat flux, o2T=ox2 ¼ 0, and thus, axial conduction
exerts no influence on the Nusselt number. It is unclear

whether a thermally fully developed state satisfying Eq.

(9) can exist in a constant wall temperature channel with

volumetric heating prior to the establishment of the as-

ymptotic dTm=dx ¼ 0 condition described above. Given
the very short thermal development length for typical

electro-osmotically generated flows in microchannels,

the question is perhaps only marginally relevant.

The solution for the fully developed temperature

distribution and corresponding Nusselt number for

the second volumetric scenario described above (for

constant imposed channel wall temperature) may be

found by integrating Eq. (17) analytically for the case

dTm=dx ¼ 0 (which mandates that sa=qw ¼ �2 and )1
for the circular tube and parallel plate configurations,

respectively) to determine the temperature distribution.

The mixed mean temperature is again determined for the

value of Z of interest using Eq. (12). The resulting so-
lution for the Nusselt number is identical to the solution

for the constant wall heat flux boundary condition with

sa=qw ¼ �2 (circular tube) and sa=qw ¼ �1 (parallel
plates), where the fluid convective cooling at the wall is

balanced by the volumetric generation. These solutions

Table 2

Expressions for the functions AðZÞ and BðZÞ in the Nusselt number, Eq. (16)
AðZÞ BðZÞ

Parallel plate channel 1
12
� 1
2Z2 þ 5

8Z3 � e�Z 5Z
48
� 1
2Z þ 3

2Z3

� �
þ e�2Z � 1

6
þ 3
4Z2 þ 7

8Z3 þ Z2

30


 � 1
12Z � 1

4Z2 þ 1
8Z3 þ 1

4Z4
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are not repeated here, since they may be derived from

Eq. (16) by specifying the appropriate value of S for the
two configurations.

3. Discussion of thermal transport

Shown in Figs. 6 and 7 are the normalized temper-

ature profiles h ¼ ðT � TmÞ=ðq00wa=kÞ for the constant
heat flux condition in the parallel plate and circular tube

geometries, respectively, plotted versus the wall-normal

coordinate for several S values. Recall that S ¼ sa=q00w,
and thus, for positive q00w, S varies between 0 (q

00
w ! 1 or

s ¼ 0) and 1 ðq00w ¼ 0Þ. Consequently, there exists no
upper limit on the magnitude of h. The S ¼ �2 (circular
tube) and )1 (parallel plates) cases correspond to the
specified constant wall temperature solution where far

downstream from the inlet, all of the energy generated

due to the Joule heating is dissipated convectively at the

tube walls, and thus, the fluid is cooled with a constant

wall heat flux. The channel wall location corresponds to

Y ¼ 0 in Fig. 6 and R ¼ 1 (R ¼ r=a for the circular tube)
in Fig. 7, as shown in the coordinate system definitions

of Fig. 2. Note that at Z ¼ 100, h is approaching a
profile shape independent of S. Indeed for Z ! 1, the
velocity profile becomes uniform U ¼ 1, and the de-
pendence on S vanishes in Eq. (11). Resulting expres-
sions describing h can then be found through solution of
the simplified, slug flow form of Eq. (11) (or, alterna-

tively, by reducing Eqs. (13) and (14) for Z ! 1). The
limiting-case temperature profiles for Z ! 1 are thus

hðY Þ ¼ Y 2=2� Y þ 1=3 and hðRÞ ¼ ðR2 � 1Þ=2þ 1=4
for the parallel plate and circular tube configurations,

respectively. At the other velocity profile extreme for

Z ! 1 the temperature profile shows significant depen-

dence on S. Here, for increasing S (or increasing Joule
heating), h shows greater variation between the center-
line and the wall temperatures. In general, the depen-

dence of h on S increases as Z decreases.
Fig. 6. Normalized temperature profiles for the parallel plate

channel as a function of Z and S.

Fig. 7. Normalized temperature profiles for the circular tube as

a function of Z and S.
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The fully developed Nusselt number is plotted as a

function of relative duct radius Z for values of S ranging
from )1 to 100 and )2 to 100 in Figs. 8 and 9, respec-
tively, for the parallel plate and circular tube geometries.

As Z ! 1, Nu approaches 12 and 8 for the two condi-
tions, respectively, reproducing the results for slug flow.

These values are independent of the magnitude of the

internal energy generation, and as expected, the magni-

tude of Nu is greatest at this limiting condition. However,

the value of Z at which Nu approaches its asymptotic
value of 8 and 12 for the two geometries is dependent on

S, observed to increase for increasing S. At the other
extreme, as Z ! 0:5, the Nusselt number is strongly de-
pendent on dimensionless source magnitude for the two

geometries, and for the circular tube case the values are

approximately the same as that for Poiseuille flow with

internal volumetric heating as described by Tyagi [39]. Nu
decreases as S increases for all finite values of Z. Indeed,
for S ! 1 (e.g., q00w ! 0), the Nusselt number vanishes,

Nu ! 0. At Z values between the extremes, where the
velocity profile is neither parabolic nor uniform, the

normalized heat transfer coefficient changes accordingly.

Also shown in Figs. 8 and 9 is the Nusselt number

behavior for constant wall temperature and constant

wall heat flux boundaries with S ¼ 0. Although for any
electro-osmotic flow S 6¼ 0, these cases are included for
completeness and comparative purposes. For vanishing

dimensionless source, the Nusselt number for the con-

stant wall temperature case is lower than for the con-

stant wall heat flux condition for all Z. Note that for
S ¼ 0, as Z ! 0:5, Nu approaches the classical values
for pressure-driven flow in tubes and between plates, for

both the constant heat flux and constant wall tempera-

ture boundary conditions. The differences in Nu between
the two boundary conditions for S ¼ 0 are 10% and 19%
for the parallel plates and circular tube, respectively. By

contrast, as Z ! 1 the differences in Nu between the
two conditions are 22% and 38%.

The second constant wall temperature case consid-

ered (q00w ¼ constant with S ¼ �2 or )1) is that for which
all energy generated volumetrically in the fluid is dissi-

pated convectively at the wall, and thus, cooling of the

fluid occurs at a constant (negative) wall heat flux. This

interesting case exhibits Nusselt numbers of greater

magnitude for all Z than any other condition, constant
wall heat flux or constant wall temperature, zero or

nonzero source, for both geometries. The relative dif-

ference in the magnitude of Nu between the fluid cooling
and other cases vanishes for Z ! 1 and is largest as

Z ! 0:5. At Z ¼ 0:5, the Nusselt number for S ¼ �2 in
the circular tube is about 70% greater than for its S ¼ 2
counterpart, despite the fact that the magnitude (but not

the sign) of the wall heat flux is the same for the two

cases. Similarly, for the parallel plate configuration the

Nusselt number for S ¼ �1 is approximately 20%

greater than for the S ¼ 1 case. This is illustrated

graphically in the normalized temperature profiles of

Figs. 6 and 7, where for a given Z magnitude the tem-
perature gradients at the channel wall are identical for

all S values, but the wall temperature decreases as S
decreases. Thus, for the electro-osmotic flow considered

here with volumetric energy generation, fluid cooling

always results in higher heat transfer coefficient than

fluid heating, even for conditions of identical wall heat

flux magnitude.

Fig. 8. Variation of the fully developed Nusselt number with Z
and S for the parallel plate channel.
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Fig. 9. Variation of the fully developed Nusselt number with Z
and S for the circular tube.
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It should be noted that for Z ! 1 the present results

are valid regardless of the magnitude of the wall zeta

potential. However, as Z decreases the analysis and re-
sults are valid only for low zeta potentials (less than

about 25 mV) since the Debye–H€uuckel linearization was
invoked. For these restrictions the present results provide

the fully developed convective heat transfer coefficient

for the entire range of problem parameters for electro-

osmotically generated flow in microchannels with con-

stant properties. For larger wall potentials and finite Z,
however, Eqs. (2) and (3) are no longer valid, and the

solution to the excess charge distribution and corre-

sponding velocity profiles must be obtained from nu-

merical solution. In general the electro-osmotic mobility

is a function of the fluid temperature since the viscosity,

zeta potential, and dielectric constant are all temperature

dependent. Likewise the Debye length exhibits some

temperature dependence. Consequently, the momentum

and energy equations are coupled when property varia-

tion is accounted for. In this case a closed form solution

may exist for some idealized temperature dependent be-

havior. However, in general the solution must be ob-

tained by numerical methods.

4. Conclusions

Thermally fully developed, electro-osmotically gen-

erated transport has been analyzed for a parallel plate

microchannel and circular microtube under imposed

constant wall heat flux and constant wall temperature

boundary conditions. For the constant heat flux bound-

ary condition, the fully developed Nusselt number has

been found to depend on the duct radius/Debye length/

duct radius ratio and the dimensionless volumetric

source, varying between the limits defined by small and

large relative radius. Increasing dimensionless volumet-

ric source (due to the Joule heating) results in a decrease

in Nusselt number for all relative channel sizes. For

the constant wall temperature boundary condition, the

channel streamwise asymptotic condition is one for

which all energy generated volumetrically in the fluid

due to Joule heating is dissipated convectively at the

channel wall. This gives rise to a condition of simulta-

neous uniform wall temperature and uniform wall heat

flux (with fluid cooling) in the fully developed region.

This scenario is shown to be identical to the case of

imposed constant wall heat flux with a negative dimen-

sionless volumetric source whose magnitude is dictated

by an overall fluid energy balance.
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